
Copyright ©2020 MakeUseOf. For more cheat sheets, head over to www.makeuseof.com

Essential SQL Commands
Command Name Description ¹Example

Query Commands
SELECT Basic query building block to retrieve data. SELECT 1 FROM table_name;

SELECT * Using * with SELECT returns all columns. SELECT * FROM table_name;

SELECT column Specify exact columns with their name. SELECT column_name FROM table_name;

SELECT table.column Reference a column from a specific table. SELECT table_name.column_name FROM table_name, table_2_name;

FROM Specify where to find data. SELECT column_name FROM table_name;

AS Temporarily alias a table name or column to a new name. SELECT new_table_name.*, column_name AS new_column FROM table_name AS
new_table_name;

WHERE Filter results with a condition. SELECT * FROM table_name WHERE column_name = 'value';

AND Use multiple conditions with a WHERE clause. Results must
match all conditions. SELECT * FROM table_name WHERE column_name < 10 AND column_name > 1;

OR Use multiple conditions with a WHERE clause. Results only need
to match one condition. SELECT * FROM table_name WHERE column_name < 10 OR column_name = 15;

ORDER BY Order the results by a column. The database chooses how to
order. SELECT * FROM table_name ORDER BY column_name;

ORDER BY column ASC Order the results by a column in ascending order. SELECT * FROM table_name ORDER BY column_name ASC;

ORDER BY column DESC Order the results by a column in descending order. SELECT * FROM table_name ORDER BY column_name DESC;

LIMIT Restrict the number of results returned. SELECT * FROM table_name LIMIT 5;

OFFSET Skip the first OFFSET number of rows. Often used with LIMIT. SELECT * FROM table_name LIMIT 5 OFFSET 10;

SUBQUERY Run a query to retrieve data for another query. SELECT column FROM table_name where column_name IN (SELECT
column_2_name FROM table_2_name);

Aggregate Functions²
COUNT Count the number of rows that match the query. SELECT COUNT(column_name) FROM table_name;

MAX Return the highest value in a numeric column. SELECT MAX(column_name) FROM table_name;

MIN Return the lowest value in a numeric column. SELECT MIN(column_name) FROM table_name;

SUM Sum the values of a numeric column. SELECT SUM(column_name) FROM table_name;

AVG Calculate the average value for a numeric column. SELECT AVG(column_name) FROM table_name;

HAVING Used with aggregate functions instead of the WHERE clause. SELECT COUNT(column_name) FROM table_name HAVING column_name > 10;

GROUP BY Used to refine an aggregate result. SELECT COUNT(column_name) FROM table_name GROUP BY column_2_name;

Operators
LIKE Case-sensitive search for a pattern with a wildcard operator (%). SELECT column_name FROM table_name WHERE column_name LIKE '%VALUE%';

ILIKE Case-insensitive search for a pattern with a wildcard operator (%). SELECT column_name FROM table_name WHERE column_name ILIKE '%value%';

BETWEEN Search for a value between two values. Works with dates or
numbers.

SELECT column_name FROM table_name WHERE column_name BETWEEN 1 AND
10;

> Search for values greater than a condition. SELECT column_name FROM table_name WHERE column_name > 10;

>= Search for values greater or equal to a condition. SELECT column_name FROM table_name WHERE column_name >= 10;

< Search for values less than a condition. SELECT column_name FROM table_name WHERE column_name < 10;

<= Search for values less than or equal to a condition. SELECT column_name FROM table_name WHERE column_name <= 10;

= Search for values matching a condition exactly. SELECT column_name FROM table_name where column_name = 10;

<> Search for values not equal to a condition. SELECT column_name FROM table_name WHERE column_name <> 10;

UNION Combine two unique queries (with the same columns) into one
result.

SELECT column_name FROM table_name UNION SELECT column_2_name FROM
table_2_name;

UNION ALL Combine two queries (with the same columns) into one result.
Duplicates allowed.

SELECT column_name FROM table_name UNION ALL SELECT column_2_name
FROM table_2_name;

IN Shorthand for WHERE. Specifies multiple OR conditions. SELECT column_name FROM table_name where column_name IN ('A', 'B', 'C');

NOT IN Shorthand for WHERE. Specifies multiple OR conditions
(inverted) or not equal to. SELECT column_name FROM table_name where column_name NOT IN ('A', 'B', 'C');

IS NULL Check for empty values. SELECT column_name FROM table_name WHERE column_name IS NULL;

IS NOT NULL Check for no empty values. SELECT column_name FROM table_name WHERE column_name IS NOT NULL;

INTERSECT Return results which match two queries. SELECT column_name FROM table_name INTERSECT SELECT column_2_name
FROM table_2_name;

MINUS ²Return results in one query which are not in another query. SELECT column_name FROM table_name MINUS SELECT column_2_name FROM
table_2_name;

http://www.makeuseof.com

Copyright ©2020 MakeUseOf. For more cheat sheets, head over to www.makeuseof.com

Command Name Description Example

Joins
ON Used to specify the column to compare and match results. SELECT * FROM table_name LEFT OUTER JOIN table_2_name ON

table_name.column_name = table_2_name.column_name;

USING Shorthand for ON, used when the column name is the same in
both tables.

SELECT * FROM table_name LEFT OUTER JOIN table_2_name ON
table_name.column_name = table_2_name.column_2_name;

LEFT OUTER JOIN All the results from the left table, with only the matching results
from the right table.

SELECT * FROM table_name LEFT OUTER JOIN table_2_name ON
table_name.column_name = table_2_name.column_2_name;

LEFT OUTER JOIN (WITH
NULL)

(With null) All the results from the left table but not in the right
table.

SELECT * FROM table_name LEFT OUTER JOIN table_2_name ON
table_name.column_name = table_2_name.column_2_name WHERE
table_2_name.column_2_name IS NULL;

INNER JOIN All the results that match in both the left and right tables. SELECT * FROM table_name INNER JOIN table_2_name ON
table_name.column_name = table_2_name.column_2_name;

FULL OUTER JOIN All the results from both the left and right tables. SELECT * FROM table_name FULL OUTER JOIN table_2_name ON
table_name.column_name = table_2_name.column_2_name;

FULL OUTER JOIN (WITH
NULL)

(With null) All the results from both the left and right tables
excluding results in both tables.

SELECT * FROM table_name FULL OUTER JOIN table_2_name ON
table_name.column_name = table_2_name.column_2_name WHERE
table_name.column_name IS NULL OR table_2_name.column_2_name IS NULL;

RIGHT OUTER JOIN All the results from the right table, with only the matching results
from the left table.

SELECT * FROM table_2_name RIGHT OUTER JOIN table_name ON
table_2_name.column_2_name = table_name.column_name;

RIGHT OUTER JOIN (WITH
NULL)

(With null) All the results from the right table but not in the left
table.

SELECT * FROM table_2_name RIGHT OUTER JOIN table_name ON
table_2_name.column_2_name = table1.column_name WHERE
table_name.column_name IS NULL;

Creating and Editing Tables
CREATE TABLE Create a new table. CREATE TABLE table_name (column_name datatype column_2_name datatype);

NULL Allow empty values for this field. CREATE TABLE table_name (column_name column_name datatype NULL);

NOT NULL Don't allow empty values for this field. CREATE TABLE table_name (column_name column_name datatype NOT NULL);

DEFAULT A value to populate the field with if one is not supplied. CREATE TABLE table_name (column_name datatype DEFAULT 'makeuseof');

AS Create a new table based on the structure of an existing table.
The new table will contain the data from the old table. CREATE TABLE table_2_name AS SELECT * FROM table_name;

ALTER TABLE (ADD
COLUMN) Add a new column to an existing table. ALTER TABLE table_name ADD COLUMN column_2_name datatype;

ALTER TABLE (DROP
COLUMN)

Remove a column from an existing table. ALTER TABLE table_name DROP COLUMN column_2_name;

ALTER TABLE (ALTER
COLUMN) Change the datatype of an existing column. ALTER TABLE table_2_name ALTER COLUMN column_name datatype;

ALTER TABLE (RENAME
COLUMN)

Rename an existing column. ALTER TABLE table_name RENAME COLUMN column_name TO
new_column_name datatype;

ALTER TABLE (RENAME
TABLE) Rename an existing table. RENAME TABLE table_name TO new_table_name;

ALTER TABLE (MODIFY
NULL) Allow null values for a column. ALTER TABLE table_name MODIFY column_name datatype NULL;

ALTER TABLE (MODIFY NOT
NULL)

Prevent null values for a column. ALTER TABLE table_name MODIFY column_name datatype NOT NULL;

DROP TABLE Delete a table and all its data. DROP TABLE table_name;

TRUNCATE TABLE Delete all the data in a table, but not the table itself. TRUNCATE TABLE table_name;

Constraints
PRIMARY KEY A value that uniquely identifies a record in a table. A combination

of NOT NULL and UNIQUE.
CREATE TABLE table_name (column_name datatype column_2_name datatype,
PRIMARY KEY (column_name, column_2_name));

FOREIGN KEY References a unique value in another table. Often a primary key in
the other table.

CREATE TABLE table_name (column_name datatype column_2_name datatype,
FOREIGN KEY (column_name) REFERENCES table_2_name (column_2_name));

UNIQUE Enforce unique values for this column per table. CREATE TABLE table_name (column_name datatype column_2_name datatype,
UNIQUE(column_name, column_2_name));

CHECK Ensure values meet a specific condition. CREATE TABLE table_name (column_name datatype column_2_name datatype,
CHECK(column_name > 10));

INDEX (CREATE) Optimize tables and greatly speed up queries by adding an index
to a column. CREATE INDEX index_name ON table_name(column_name);

INDEX (CREATE UNIQUE) Create an index that does not allow duplicate values. CREATE UNIQUE INDEX index_name ON table_name(column_name);

INDEX (DROP) Remove an index. DROP INDEX index_name;

http://www.makeuseof.com

Copyright ©2020 MakeUseOf. For more cheat sheets, head over to www.makeuseof.com

Command Name Description Example

Creating and Editing Data
INSERT (SINGLE VALUE) Add a new record to a table. INSERT INTO table_name(column_name) VALUES(value_1);

INSERT (MULTIPLE VALUES) Add several new records to a table. INSERT INTO table_name(column_name) VALUES(value_1),(value_2);

INSERT (SELECT) Add records to a table, but get the values from an existing table. INSERT INTO table_name(column_name) SELECT * FROM table_2_name;

UPDATE (ALL) Modify all existing records in a table. UPDATE table_name SET column_name = 10;

UPDATE (WHERE) Modify existing records in a table which match a condition. UPDATE table_name SET column_name = 10 WHERE column_2_name = 5;

DELETE (ALL) Remove all records from a table. DELETE FROM table_name;

DELETE (WHERE) Remove records from a table which match a condition. DELETE FROM table_name WHERE column_name = 5;

²Creating and Editing Triggers
CREATE TRIGGER Create a trigger. CREATE TRIGGER trigger_name BEFORE INSERT ON table_name FOR EACH ROW

EXECUTE stored_procedure;

CREATE TRIGGER (OR
MODIFY)

Create a trigger, or update an existing trigger if one is found with
the same name.

CREATE OR MODIFY TRIGGER trigger_name BEFORE INSERT ON table_name FOR
EACH ROW EXECUTE stored_procedure;

WHEN (BEFORE) Run the trigger before the event happens. CREATE TRIGGER trigger_name BEFORE INSERT ON table_name FOR EACH ROW
EXECUTE stored_procedure;

WHEN (AFTER) Run the trigger after the event happens. CREATE TRIGGER trigger_name AFTER INSERT ON table_name FOR EACH ROW
EXECUTE stored_procedure;

EVENT (INSERT) Run the trigger before or after an insert happens. CREATE TRIGGER trigger_name BEFORE INSERT ON table_name FOR EACH ROW
EXECUTE stored_procedure;

EVENT (UPDATE) Run the trigger before or after an update happens. CREATE TRIGGER trigger_name BEFORE UPDATE ON table_name FOR EACH
ROW EXECUTE stored_procedure;

EVENT (DELETE) Run the trigger before or after a delete happens. CREATE TRIGGER trigger_name BEFORE DELETE ON table_name FOR EACH
ROW EXECUTE stored_procedure;

ON Specify which table to target with this trigger. CREATE TRIGGER trigger_name BEFORE INSERT ON table_name FOR EACH ROW
EXECUTE stored_procedure;

TRIGGER_TYPE (FOR EACH
ROW) Execute the trigger for every row changed. CREATE TRIGGER trigger_name BEFORE INSERT ON table_name FOR EACH ROW

EXECUTE stored_procedure;

TRIGGER_TYPE (FOR EACH
STATEMENT)

Execute the trigger once per SQL statement, regardless of how
many rows are altered.

CREATE TRIGGER trigger_name BEFORE INSERT ON table_name FOR EACH ROW
STATEMENT stored_procedure;

EXECUTE Keyword to indicate the end of the main trigger definition. CREATE TRIGGER trigger_name BEFORE INSERT ON table_name FOR EACH ROW
EXECUTE stored_procedure;

DROP TRIGGER Delete a trigger. DROP TRIGGER trigger_name;

Creating and Editing Views
CREATE VIEW Create a new view. CREATE VIEW view_name(column_name) AS SELECT * FROM table_name;

AS Define where to retrieve the data for a view. CREATE VIEW view_name(column_name) AS SELECT * FROM table_name;

WITH CASCADED CHECK
OPTION

Ensure any data modified through a view meets the rules defined
by the rule. Apply this to any other views.

CREATE VIEW view_name(column_name) AS SELECT * FROM table_name WITH
CASCADED CHECK OPTION;

WITH LOCAL CHECK OPTION Ensure any data modified through a view meets the rules defined
by the rule. Ignore this for any other views.

CREATE VIEW view_name(column_name) AS SELECT * FROM table_name WITH
LOCAL CHECK OPTION;

CREATE RECURSIVE VIEW Create a recursive view (one that refers to a recursive common
table expression).

CREATE RECURSIVE VIEW view_name(column_name) AS SELECT * FROM
table_name;

CREATE TEMPORARY VIEW Create a view that exists for the current session only. CREATE TEMPORARY VIEW view_name(column_name) AS SELECT * FROM
table_name;

DROP VIEW Delete a view. DROP VIEW view_name;

²Common Table Expressions (CTEs)
WITH Create a new common table expression. WITH cte_name (column_name) AS (SELECT * FROM table_name) SELECT * FROM

cte_name;

AS Specify the data to use in the CTE. WITH cte_name (column_name) AS (SELECT * FROM table_name) SELECT * FROM
cte_name;

, (COMMA) Chain multiple CTEs. WITH cte_name (column_name) AS (SELECT * FROM table_name), cte_2_name
(column_2_name) AS (SELECT * FROM table_2_name) SELECT * FROM cte_name;

¹Examples given in MySQL syntax.
²Database engine implementations and support often vary.

http://www.makeuseof.com

	Essential SQL Commands

