Essential SOL Commands

Command Name

Query Commands
SELECT

SELECT *

SELECT column

SELECT table.column

FROM

AS
WHERE

AND
OR

ORDER BY

ORDER BY column ASC
ORDER BY column DESC
LIMIT

OFFSET

SUBQUERY

Description

Basic query building block to retrieve data.
Using * with SELECT returns all columns.
Specify exact columns with their name.
Reference a column from a specific table.

Specify where to find data.
Temporarily alias a table name or column to a new name.

Filter results with a condition.

Use multiple conditions with a WHERE clause. Results must
match all conditions.

Use multiple conditions with a WHERE clause. Results only need

to match one condition.

Order the results by a column. The database chooses how to
order.

Order the results by a column in ascending order.
Order the results by a column in descending order.
Restrict the number of results returned.

Skip the first OFFSET number of rows. Often used with LIMIT.

Run a query to retrieve data for another query.

Aggregate Functions?

COUNT
MAX

MIN

sumMm

AVG
HAVING
GROUP BY

Operators
LIKE
ILIKE

BETWEEN

<>
UNION

UNION ALL
IN
NOTIN

IS NULL
IS NOT NULL

INTERSECT

MINUS

Count the number of rows that match the query.

Return the highest value in a numeric column.

Return the lowest value in a numeric column.

Sum the values of a numeric column.

Calculate the average value for a numeric column.

Used with aggregate functions instead of the WHERE clause.

Used to refine an aggregate result.

Case-sensitive search for a pattern with a wildcard operator (%).

Case-insensitive search for a pattern with a wildcard operator (%).

Search for a value between two values. Works with dates or
numbers.

Search for values greater than a condition.

Search for values greater or equal to a condition.
Search for values less than a condition.

Search for values less than or equal to a condition.
Search for values matching a condition exactly.
Search for values not equal to a condition.

Combine two unique queries (with the same columns) into one
result.

Combine two queries (with the same columns) into one result.
Duplicates allowed.

Shorthand for WHERE. Specifies multiple OR conditions.

Shorthand for WHERE. Specifies multiple OR conditions
(inverted) or not equal to.

Check for empty values.

Check for no empty values.

Return results which match two queries.

2Return results in one query which are not in another query.

lExample

SELECT 1 FROM table_name;

SELECT * FROM table_name;

SELECT column_name FROM table_name;

SELECT table_name.column_name FROM table_name, table_2_name;

SELECT column_name FROM table_name;

SELECT new_table_name.*, column_name AS new_column FROM table_name AS
new_table_name;

SELECT * FROM table_name WHERE column_name = 'value';

SELECT * FROM table_name WHERE column_name <10 AND column_name > 1;
SELECT * FROM table_name WHERE column_name <10 OR column_name =15;

SELECT * FROM table_name ORDER BY column_name;

SELECT * FROM table_name ORDER BY column_name ASC;
SELECT * FROM table_name ORDER BY column_name DESC;
SELECT * FROM table_name LIMIT 5;

SELECT * FROM table_name LIMIT 5 OFFSET 10;

SELECT column FROM table_name where column_name IN (SELECT
column_2_name FROM table_2_name);

SELECT COUNT(column_name) FROM table_name;

SELECT MAX(column_name) FROM table_name;

SELECT MIN(column_name) FROM table_name;

SELECT SUM(column_name) FROM table_name;

SELECT AVG(column_name) FROM table_name;

SELECT COUNT(column_name) FROM table_name HAVING column_name > 10;
SELECT COUNT(column_name) FROM table_name GROUP BY column_2_name;

SELECT column_name FROM table_name WHERE column_name LIKE '%VALUE%";
SELECT column_name FROM table_name WHERE column_name ILIKE '%value%';

SELECT column_name FROM table_name WHERE column_name BETWEEN 1 AND
10;

SELECT column_name FROM table_name WHERE column_name > 10;
SELECT column_name FROM table_name WHERE column_name >=10;
SELECT column_name FROM table_name WHERE column_name <10;
SELECT column_name FROM table_name WHERE column_name <=10;
SELECT column_name FROM table_name where column_name = 10;
SELECT column_name FROM table_name WHERE column_name <> 10;

SELECT column_name FROM table_name UNION SELECT column_2_name FROM
table_2_name;

SELECT column_name FROM table_name UNION ALL SELECT column_2_name
FROM table_2_name;

SELECT column_name FROM table_name where column_name IN (A, 'B’, 'C’);
SELECT column_name FROM table_name where column_name NOT IN ('A’, 'B’, 'C");

SELECT column_name FROM table_name WHERE column_name IS NULL;
SELECT column_name FROM table_name WHERE column_name IS NOT NULL;

SELECT column_name FROM table_name INTERSECT SELECT column_2_name
FROM table_2_name;

SELECT column_name FROM table_name MINUS SELECT column_2_name FROM
table_2_name;

Copyright ©2020 MakeUseOf. For more cheat sheets, head over to www.makeuseof.com


http://www.makeuseof.com

Command Name

Joins

ON

USING

LEFT OUTER JOIN

LEFT OUTER JOIN (WITH
NULL)

INNER JOIN

FULL OUTER JOIN

FULL OUTER JOIN (WITH
NULL)

RIGHT OUTER JOIN

RIGHT OUTER JOIN (WITH
NULL)

Description

Used to specify the column to compare and match results.

Shorthand for ON, used when the column name is the same in
both tables.

All the results from the left table, with only the matching results
from the right table.

(With null) All the results from the left table but not in the right
table.

All the results that match in both the left and right tables.

All the results from both the left and right tables.

(With null) All the results from both the left and right tables
excluding results in both tables.

All the results from the right table, with only the matching results
from the left table.

(With null) All the results from the right table but not in the left
table.

Creating and Editing Tables

CREATE TABLE
NULL

NOT NULL
DEFAULT

AS

ALTER TABLE (ADD
COLUMN)

ALTER TABLE (DROP
COLUMN)

ALTER TABLE (ALTER
COLUMN)

ALTER TABLE (RENAME
COLUMN)

ALTER TABLE (RENAME
TABLE)

ALTER TABLE (MODIFY
NULL)

ALTER TABLE (MODIFY NOT

NULL)
DROP TABLE

TRUNCATE TABLE

Constraints

PRIMARY KEY
FOREIGN KEY
UNIQUE
CHECK

INDEX (CREATE)

INDEX (CREATE UNIQUE)
INDEX (DROP)

Create a new table.
Allow empty values for this field.
Don't allow empty values for this field.

A value to populate the field with if one is not supplied.

Create a new table based on the structure of an existing table.
The new table will contain the data from the old table.

Add a new column to an existing table.

Remove a column from an existing table.

Change the datatype of an existing column.

Rename an existing column.

Rename an existing table.

Allow null values for a column.

Prevent null values for a column.

Delete a table and all its data.

Delete all the data in a table, but not the table itself.

A value that uniquely identifies a record in a table. A combination
of NOT NULL and UNIQUE.

References a unique value in another table. Often a primary key in
the other table.

Enforce unique values for this column per table.

Ensure values meet a specific condition.

Optimize tables and greatly speed up queries by adding an index
to a column.

Create an index that does not allow duplicate values.

Remove an index.

Example

SELECT * FROM table_name LEFT OUTER JOIN table_2_name ON
table_name.column_name = table_2_name.column_name;

SELECT * FROM table_name LEFT OUTER JOIN table_2_name ON
table_name.column_name = table_2_name.column_2_name;

SELECT * FROM table_name LEFT OUTER JOIN table_2_name ON
table_name.column_name = table_2_name.column_2_name;

SELECT * FROM table_name LEFT OUTER JOIN table_2_name ON
table_name.column_name = table_2_name.column_2_name WHERE
table_2_name.column_2_name IS NULL;

SELECT * FROM table_name INNER JOIN table_2_name ON
table_name.column_name = table_2_name.column_2_name;

SELECT * FROM table_name FULL OUTER JOIN table_2_name ON
table_name.column_name = table_2_name.column_2_name;

SELECT * FROM table_name FULL OUTER JOIN table_2_name ON
table_name.column_name = table_2_name.column_2_name WHERE
table_name.column_name IS NULL OR table_2_name.column_2_name IS NULL;

SELECT * FROM table_2_name RIGHT OUTER JOIN table_name ON
table_2_name.column_2_name = table_name.column_name;

SELECT * FROM table_2_name RIGHT OUTER JOIN table_name ON
table_2_name.column_2_name = tablel.column_name WHERE
table_name.column_name IS NULL;

CREATE TABLE table_name (column_name datatype column_2_name datatype);
CREATE TABLE table_name (column_name column_name datatype NULL);
CREATE TABLE table_name (column_name column_name datatype NOT NULL);
CREATE TABLE table_name (column_name datatype DEFAULT 'makeuseof’);

CREATE TABLE table_2_name AS SELECT * FROM table_name;
ALTER TABLE table_name ADD COLUMN column_2_name datatype;
ALTER TABLE table_name DROP COLUMN column_2_name;

ALTER TABLE table_2_name ALTER COLUMN column_name datatype;

ALTER TABLE table_name RENAME COLUMN column_name TO
new_column_name datatype;

RENAME TABLE table_name TO new_table_name;
ALTER TABLE table_name MODIFY column_name datatype NULL;

ALTER TABLE table_name MODIFY column_name datatype NOT NULL;

DROP TABLE table_name;
TRUNCATE TABLE table_name;

CREATE TABLE table_name (column_name datatype column_2_name datatype,
PRIMARY KEY (column_name, column_2_name));

CREATE TABLE table_name (column_name datatype column_2_name datatype,
FOREIGN KEY (column_name) REFERENCES table_2_name (column_2_name));

CREATE TABLE table_name (column_name datatype column_2_name datatype,
UNIQUE(column_name, column_2_name));

CREATE TABLE table_name (column_name datatype column_2_name datatype,
CHECK(column_name > 10));

CREATE INDEX index_name ON table_name(column_name);

CREATE UNIQUE INDEX index_name ON table_name(column_name);
DROP INDEX index_name;

Copyright ©2020 MakeUseOf. For more cheat sheets, head over to www.makeuseof.com


http://www.makeuseof.com

Command Name

Description

Creating and Editing Data

INSERT (SINGLE VALUE)
INSERT (MULTIPLE VALUES)
INSERT (SELECT)

UPDATE (ALL)

UPDATE (WHERE)

DELETE (ALL)

DELETE (WHERE)

Add a new record to a table.

Add several new records to a table.

Add records to a table, but get the values from an existing table.
Modify all existing records in a table.

Modify existing records in a table which match a condition.
Remove all records from a table.

Remove records from a table which match a condition.

2Creating and Editing Triggers

CREATE TRIGGER

CREATE TRIGGER (OR
MODIFY)

WHEN (BEFORE)

WHEN (AFTER)

EVENT (INSERT)

EVENT (UPDATE)

EVENT (DELETE)

ON

TRIGGER_TYPE (FOR EACH
ROW)

TRIGGER_TYPE (FOR EACH
STATEMENT)

EXECUTE

DROP TRIGGER

Create a trigger.

Create a trigger, or update an existing trigger if one is found with
the same name.

Run the trigger before the event happens.

Run the trigger after the event happens.

Run the trigger before or after an insert happens.

Run the trigger before or after an update happens.

Run the trigger before or after a delete happens.

Specify which table to target with this trigger.

Execute the trigger for every row changed.

Execute the trigger once per SQL statement, regardless of how
many rows are altered.

Keyword to indicate the end of the main trigger definition.

Delete a trigger.

Creating and Editing Views

CREATE VIEW
AS

WITH CASCADED CHECK
OPTION

WITH LOCAL CHECK OPTION

CREATE RECURSIVE VIEW

CREATE TEMPORARY VIEW

DROP VIEW

Create a new view.
Define where to retrieve the data for a view.

Ensure any data modified through a view meets the rules defined
by the rule. Apply this to any other views.

Ensure any data modified through a view meets the rules defined
by the rule. Ignore this for any other views.

Create a recursive view (one that refers to a recursive common
table expression).

Create a view that exists for the current session only.

Delete a view.

2Common Table Expressions (CTEs)

WITH

AS

,(COMMA)

1Examples given in MySQL syntax.

Create a new common table expression.

Specify the data to use in the CTE.

Chain multiple CTEs.

?Database engine implementations and support often vary.

Example

INSERT INTO table_name(column_name) VALUES(value_1);

INSERT INTO table_name(column_name) VALUES(value_1),(value_2);
INSERT INTO table_name(column_name) SELECT * FROM table_2_name;
UPDATE table_name SET column_name =10;

UPDATE table_name SET column_name =10 WHERE column_2_name = 5;
DELETE FROM table_name;

DELETE FROM table_name WHERE column_name = 5;

CREATE TRIGGER trigger_name BEFORE INSERT ON table_name FOR EACH ROW
EXECUTE stored_procedure;

CREATE OR MODIFY TRIGGER trigger_name BEFORE INSERT ON table_name FOR
EACH ROW EXECUTE stored_procedure;

CREATE TRIGGER trigger_name BEFORE INSERT ON table_name FOR EACH ROW
EXECUTE stored_procedure;

CREATE TRIGGER trigger_name AFTER INSERT ON table_name FOR EACH ROW
EXECUTE stored_procedure;

CREATE TRIGGER trigger_name BEFORE INSERT ON table_name FOR EACH ROW
EXECUTE stored_procedure;

CREATE TRIGGER trigger_name BEFORE UPDATE ON table_name FOR EACH
ROW EXECUTE stored_procedure;

CREATE TRIGGER trigger_name BEFORE DELETE ON table_name FOR EACH
ROW EXECUTE stored_procedure;

CREATE TRIGGER trigger_name BEFORE INSERT ON table_name FOR EACH ROW
EXECUTE stored_procedure;

CREATE TRIGGER trigger_name BEFORE INSERT ON table_name FOR EACH ROW
EXECUTE stored_procedure;

CREATE TRIGGER trigger_name BEFORE INSERT ON table_name FOR EACH ROW
STATEMENT stored_procedure;

CREATE TRIGGER trigger_name BEFORE INSERT ON table_name FOR EACH ROW
EXECUTE stored_procedure;

DROP TRIGGER trigger_name;

CREATE VIEW view_name(column_name) AS SELECT * FROM table_name;
CREATE VIEW view_name(column_name) AS SELECT * FROM table_name;

CREATE VIEW view_name(column_name) AS SELECT * FROM table_name WITH
CASCADED CHECK OPTION;

CREATE VIEW view_name(column_name) AS SELECT * FROM table_name WITH
LOCAL CHECK OPTION;

CREATE RECURSIVE VIEW view_name(column_name) AS SELECT * FROM
table_name;

CREATE TEMPORARY VIEW view_name(column_name) AS SELECT * FROM
table_name;

DROP VIEW view_name;

WITH cte_name (column_name) AS (SELECT * FROM table_name) SELECT * FROM
cte_name;

WITH cte_name (column_name) AS (SELECT * FROM table_name) SELECT * FROM
cte_name;

WITH cte_name (column_name) AS (SELECT * FROM table_name), cte_2_name
(column_2_name) AS (SELECT * FROM table_2_name) SELECT * FROM cte_name;

Copyright ©2020 MakeUseOf. For more cheat sheets, head over to www.makeuseof.com


http://www.makeuseof.com

	Essential SQL Commands

